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Missing data are a general hindrance for all iterative, dual-space methods of

structure determination. Charge flipping is no exception; its real-space

perturbation may turn out to be too strong if the amount of diffraction data

is not sufficient. To handle this situation, we introduce a variant of the basic

algorithm which combines the original charge-flipping density modification in

real space, the reflector of the Fourier-modulus projection in reciprocal space

and the parameterless iteration scheme of averaged alternating reflections

(AAR). This simple algorithm is a balance of increased perturbations and full

negative feedback, with the extra freedom that it can be fine-tuned by a different

treatment of different unobserved reflections. The efficiency of the method was

tested using several single-crystal data sets and varying the amount of missing

data at both high and low resolution. The results prove that many small-

molecule structures can be solved by utilizing significantly less data than is

standard in current crystallographic practice.

1. Introduction

Charge flipping is a simple, dual-space algorithm of structure

determination (Oszlányi & Süto��, 2004, 2008) which has

enjoyed increasing acceptance in the last few years. Its many

variants have been successfully applied to the ab initio solu-

tion of single crystals (Piao et al., 2008; Lister et al., 2009),

powders (Wu et al., 2006; Baerlocher, McCusker & Palatinus,

2007), periodic and aperiodic structures (Palatinus, 2004),

quasicrystals (Katrych et al., 2007; Weber et al., 2009), zeolites

(Baerlocher, Gramm et al., 2007; O’Keeffe, 2009), protein

heavy-atom substructures (Dumas & van der Lee, 2008), to

the determination of two-dimensional exit wavefunctions (Wu

& Spence, 2005; Eggeman et al., 2009) and to the reconstruc-

tion of non-periodic objects (Shneerson et al., 2008; Fung et al.,

2008). Our own research was mainly focused on selecting and

solving hard-to-solve crystal structures, cases which can be

problematic, even if the diffraction data are complete and the

resolution is high. This required various modifications of the

real- and reciprocal-space parts of the iterative Fourier cycle,

and may have given the impression that because charge flip-

ping is essentially a Fourier method, high-resolution data are

inevitable for its success.

In this paper we show that this is not the case, and at least

for many small-molecule structures the completeness and

resolution requirements can be significantly relaxed. In early

tests of the original charge-flipping algorithm it was noticed

that for some crystal structures the convergence of the itera-

tion process occurs much faster than for others. The qualita-

tive description of these ‘easy-to-solve’ cases was given in

Oszlányi & Süto�� (2005); favourable characteristics are the

presence of centrosymmetry, heavy atoms, separate molecular

fragments, high volume per non-hydrogen atom etc. It was

also observed that the same kind of structures could be

solved with a data resolution significantly lower than the usual

dmin � 0.8 Å value, although the resulting electron density was

often of poor quality. Here we pick a few such examples and

investigate how much the resolution and completeness

requirements can be reduced so that the iteration still

converges and provides a well recognizable electron density.

Two previous publications have already addressed this

issue. The first one is by Palatinus et al. (2007), which describes

a two-stage procedure. Before the iteration process it esti-

mates the missing structure-factor moduli by the maximum-

entropy method using the condition that the Patterson

function must be positive and smooth, and then runs the

charge-flipping algorithm for structure solution. Tests of the

method were impressive and, beyond the low-resolution case,

several other geometries of missing data were well treated. A

small hindrance is that the two-stage procedure requires the

use of two separate programs: BayMEM and SUPERFLIP

(van Smaalen et al., 2003; Palatinus & Chapuis, 2007), and it

seems that users rather avoid this complication in practical

work. Note that the current version of SUPERFLIP (Pala-

tinus, 2010) includes several simpler options for the treatment

of unobserved reflections (e.g. freely changing reflections or

upper bounds for unobserved moduli) which are still efficient,

and then no external program is required.

The second main approach was described by Coelho (2007)

and is implemented in the commercial Topas program

(Bruker, 2007). It incorporates the tangent formula of classical

direct methods in a modified iteration scheme. The tangent
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formula acts as a corrective influence which decreases the

perturbation of charge flipping; therefore, the real-space

perturbation must be increased differently and in a drastic

way. While this paper only discusses examples of low-

resolution data, it is likely that the procedure can also be used

with other geometries of missing data. The self-contained

implementation in Topas is convenient for the user, but as the

source code is not open, the method cannot be easily repro-

duced or modified.

The present paper describes a third approach to handling

missing data which is both effective and easy to implement. It

is essentially a negative-feedback variant of the iteration

scheme, and keeps as much of the advantages of the original

charge-flipping algorithm as possible. It is completely ab initio

and deterministic, there is no application of the tangent

formula or any target function of optimization, it still works in

space group P1 and without using the chemical composition,

and it is still based on the name-giving density modification

using a single threshold parameter.

2. Elements of the algorithm

To construct a dual-space algorithm for handling incomplete

data we must: (i) treat observed and unobserved structure

factors separately, (ii) define the real- and reciprocal-space

modifications, (iii) combine them into a suitable iteration

scheme, (iv) select parameters of the algorithm, (v) choose

appropriate figures of merit to be checked for convergence,

and (vi) improve the quality of the final electron density.

Measured diffraction intensities provide the real moduli of

the complex structure factors: FobsðhÞ ¼ jFðhÞj. Any structure-

solution method that relies on the fast Fourier transform must

work with a finite grid of the unit cell and a reciprocal-space

parallelepiped which contains all observed and unobserved

structure factors to be used in the iteration process. The

complete set of observed data occupies a spherical region of

the reciprocal-space parallelepiped, while unobserved data

can be categorized as: (i) the single point of forward scattering

Fð0Þ that can never be measured; (ii) reflections outside the

resolution sphere of radius H but within the reciprocal

parallelepiped that are not measured even if the observed data

are complete; (iii) there may be additional missing reflections

within the resolution sphere because of instrumental reasons,

e.g. regions blocked by the beamstop, blocked by a high-

pressure cell etc.

The algorithm must handle all these structure factors, partly

by an initial normalization, and partly by deciding their indi-

vidual treatment in the iterations process. In this paper the

moduli of observed reflections are normalized using the

scattering-factor function of the heaviest atom (Oszlányi &

Süto��, 2008):

EobsðhÞ ¼ FobsðhÞ=fheavyðhÞ: ð1Þ

This sharpens the target electron density as well as usual E’s,

and utilizing only the type of the heaviest atom preserves

much of the method’s ab initio character. The treatment of

unobserved structure factors is a different issue. Although

their Fobs data are not known, they must be included in the

reciprocal-space part of the iteration process. As in earlier

studies, they are either allowed to change freely or are reset to

zero in each cycle depending on the initial decision. What

these modifications really mean depends on the selected

iteration scheme.

To describe the real- and reciprocal-space modifications and

the iteration scheme we borrow the terminology and notation

of the convex feasibility problem (Stark & Yang, 1998). Here

the electron-density function sampled at the grid points ri

forms a vector � of Euclidean space. Imposing a constraint on

� corresponds to finding the closest point of a vector set C that

is achieved by an orthogonal projection PC. There are usually

two such constraints (both expressed in real space) and the

task is to find a solution that simultaneously fulfils both. The

simplest iterative phase-retrieval algorithm expressed this way

is the Gerchberg–Saxton scheme (Gerchberg & Saxton, 1972):

�nþ1
¼ PMPS�

n
ð2Þ

where �n and �nþ1 are the electron densities before and after

the nth cycle, and PS and PM are the support and modulus

projections, respectively. Unfortunately, the modulus

constraint is inherently non-convex, so while the convex

feasibility problem is a useful and widespread language, we are

left with its concise notation but without the convergence

proofs of the original mathematical theory.

For crystals there is another problem: the support of atomic

volumes is not known, so this constraint must be replaced by a

procedure that promotes only the sparseness of the electron

density. Charge flipping is such a real-space density modifi-

cation. It is defined as

R� ¼ 2L� � I: ð3Þ

Here R refers to its reflector-like construction, L� is a variant

of low-density elimination (Shiono & Woolfson, 1992), � is a

small positive threshold and I is the identity operation. The

threshold parameter is dynamic; it is updated before each

iteration cycle as � ¼ k�, where k is a constant value and

� ¼ ðh�2i � h�i2Þ1=2 is the standard deviation of the current

electron-density map (Oszlányi & Süto��, 2008). L� and R� act

on the electron density as

L�½�ðrÞ� ¼

(
�ðrÞ if �ðrÞ � �

0 otherwise

R�½�ðrÞ� ¼

(
�ðrÞ if �ðrÞ � �

��ðrÞ otherwise:
ð4Þ

We consciously use the notation L� instead of P�, to emphasize

that even though L2
� ¼ L�, this operation is not distance

minimizing (Oszlányi & Süto��, 2008). As a consequence, the

charge-flipping operation is not a true reflector, but we keep

its R� symbol.

For completeness, we also recall the steps of the Fourier-

modulus projection. ~PPM is naturally calculated in reciprocal

space, so its real-space form PM requires two additional

Fourier transforms:
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PM ¼ F
�1 ~PPMF : ð5Þ

~PPM acts differently on reflections which are (i) observed, (ii)

unobserved and forced to be zero, or (iii) unobserved and

allowed to change freely. From now on we shall use the codes

1, 0 and 2 for these three types of reflections. In the case of a

complete high-resolution data set

ð ~PPMF�ÞðhÞ ¼

(
EobsðhÞ exp½i’ðhÞ� if 0< h � H ðcode 1Þ

0 if h>H ðcode 0Þ

GðhÞ if h ¼ 0 ðcode 2Þ

ð6Þ

where GðhÞ ¼ ðF�ÞðhÞ are temporary structure factors with

phases ’ðhÞ. With missing data, a further decision must be

made to assign them the codes 0 or 2. As an example, Fig. 1

shows a typical situation of low-resolution data, when a shell

of freely floating reflections (code 2) is added in the manner of

the ‘free-lunch method’ (Caliandro et al., 2005, 2007). Special

attention must be given to those reflections that are unob-

served but must be extinct due to lattice centring, glide planes

or screw axes. The choice of this paper is to assign them the

code 0 if they are unobserved. This turns out to be very

important, and assumes the knowledge of the reflection

conditions but not the full space-group symmetry.

At this point we are equipped to give a coherent description

of iteration schemes. The basic low-density elimination (LDE)

and charge-flipping (CF) algorithms can be viewed as the

alternating application of their name-giving density modifi-

cations and the Fourier-modulus projection:

LDE ¼ PML�; ð7Þ

CF ¼ PMR�: ð8Þ

In this pair, charge flipping uses significantly more perturba-

tion to explore the phase space, and is capable of solving more

complex structures. At the same time, such an algorithm leads

to more noisy solutions, so it is useful to apply LDE as a

‘cleanup’ procedure to improve the quality of the final elec-

tron density. Also note that fine details may be hidden by this

notation, and the treatment of Fð0Þ is such an issue. For charge

flipping and its variants it is always better to let Fð0Þ change

freely (Oszlányi & Süto��, 2008). The same applies for LDE

when used for cleanup, but when used for phasing it is more

appropriate to set Fð0Þ to zero (Fleischer et al., 2010).

Some additional remarks on LDE. The current variant

differs from the 1992 original (Shiono & Woolfson, 1992) in

two ways: (i) to see clearly the relation of the two algorithms,

we keep only the name-giving real-space part, and replace the

reciprocal-space weighting by the simplest Fourier-modulus

projection; (ii) the real-space density modification now uses a

parameter that is dynamic and scales with �, which is a

significant improvement. It is also interesting that later

versions of LDE abandoned the sharp cutoff of the original

real-space modification and switched to continuous damping.

We think that it was a mistake: sharp cutoffs, especially

reflection-like charge flipping, are more efficient for phasing.

A general strategy to improve further the efficiency of

iteration schemes is to add an independent perturbation in

reciprocal space. A particularly simple choice is to replace the

Fourier-modulus projection by its reflector:

~RRM ¼ 2 ~PPM � I; ð9Þ

RM ¼ 2PM � I: ð10Þ

Unfortunately, the following variant of charge flipping does

not work:

T ¼ RMR�: ð11Þ

We reached the point where even high-resolution data do not

tolerate this amount of perturbation. There is a danger in this

popular notation that one can easily overlook what happens

with unobserved reflections. In this case, a large amount of

unexpected perturbation came from the unobserved reflec-

tions outside the resolution sphere, which changed their sign

under ~RRM, according to the definition of ~PPM for code 0.

Our previous solution [also called Fobs þ�F; see Oszlányi

& Süto�� (2008)] was to step back from this variant:

T 0 ¼ R0MR�: ð12Þ

The prime in T 0 means that unobserved reflections outside the

resolution sphere were treated differently from T. They were

explicitly reset to zero, instead of allowing the ~RRM operator to

flip their sign.
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Figure 1
Parallelepipeds of reciprocal space used in the case of missing high-
resolution data (top panel) and missing low-resolution data (bottom
panel). Dark grey regions contain observed reflections (code 1), light grey
regions contain unobserved reflections that are allowed to float freely
(code 2) and white regions contain unobserved reflections that are set to
zero (code 0).



Now, we define the iteration scheme used in the present

study. It is based on charge flipping in real space, the Fourier-

modulus reflector in reciprocal space, and relies on full

negative feedback:

1
2ðRMR� þ IÞ: ð13Þ

The same scheme but with convex constraints in both spaces

was named averaged alternating reflections (AAR) by

Bauschke et al. (2002, 2004), who analysed its relation to

earlier algorithms (Douglas & Rachford, 1956; Lions &

Mercier, 1979; Fienup, 1982). Several other algorithms are also

related, and can be considered as generalizations of the basic

scheme while introducing different intuitions and extra para-

meters (Elser, 2003; Bauschke et al., 2003; Luke, 2005).

We shall use AAR in its simple, parameterless form. In the

case of complete data, its behaviour is entirely determined by

the single � parameter of charge flipping and the amount of

available Fourier moduli. In the case of incomplete data,

assigning the codes 0 or 2 to missing structure factors gives us

more freedom in tuning the algorithm. The ~RRM operator flips

the sign of zeroed reflections [GðhÞ ! 2� 0�GðhÞ], and thus

introduces a strong perturbation, while freely floating reflec-

tions remain unchanged [GðhÞ ! 2�GðhÞ �GðhÞ], and act

as a kind of damping. There is no ‘silver bullet’ of algorithms

in this class; the right amount of perturbation required always

depends on the available data. The sufficiently strong and

tunable perturbations in the dual spaces, coupled with the

negative feedback of the above iteration scheme, make this

algorithm particularly useful for handling incomplete data.

Although we experimented with other iteration schemes, and

also obtained solutions, AAR was usually faster, gave a

broader useful � range and, most importantly, led to electron-

density maps of better quality.

To completely specify the algorithm we must also answer

the questions: how is the iteration process started? What

figure of merit is followed to identify the convergence? What

procedure is used to improve the final electron-density map?

Initialization is conventional. The starting point is in reci-

procal space, where random phases are combined with Eobs for

observed reflections, while all unobserved reflections are set to

zero. Known phases or known structural fragments could help

a lot, but we avoid their use in the present ab initio study. The

choice of figures of merit was discussed in detail in Oszlányi &

Süto�� (2008). Here we skip this problem, because by working

with known structures we can always compare the current

electron density with the ideal one. Before calculating the

correlation coefficient of electron densities we also cut the

noise by applying L�. This is an auxiliary step that does not

change the � of the main iteration process. The convergence is

signalled by a sharp increase of the correlation coefficient, and

typical values in the 0.85–0.95 range are obtained. These

correlations correspond to very clean electron-density maps,

excluding any doubt about the correctness of a solution. After

the convergence we apply an LDE cycle as a final cleanup

procedure, and we also switch back from Eobs to Fobs, which

decreases the series-termination effect of finite resolution.

3. Tests of the algorithm

For tests of the algorithm we selected eight small-molecule

structures, mostly published in Acta Cryst. C. Table 1 gives a

brief summary of their chemical composition, size, symmetry

and the resolution of their diffraction data. The first seven

items of the list are organic structures that contain only light

atoms because these more often pose problems for ab initio

phasing than crystals that also contain some heavy atoms.

Inorganic or organometallic structures are not included in the

present study because they are usually easy to solve, but in

cases when very heavy and very light atoms are in close

proximity, it is extra work to get clean electron-density maps in

those regions. With this list of test structures we tried to cover

a variety of space groups and a range of unit-cell sizes. Only

the last item deviates from our all-light-atom standard – it is

here to demonstrate how well the algorithm performs if both

inversion symmetry and heavy atoms are present.

The original data sets are nearly complete and extend to

high resolution, so their structure solution is not a problem for

any variant of charge flipping. To study the behaviour of the

previously described algorithm with incomplete data, we

performed two complementary series of tests in which the

original data sets were truncated at high or at low resolution.

For missing high-resolution data (see Fig. 1) the original

data set is used only for h1 � h � h2 where h1 ¼ 0 is fixed and

h2 ¼ 1=d2 is a parameter of our tests which simulates an upper

resolution limit that is worse than what we really have. The

measured data are deleted above the radius h2, and extended
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Table 1
List of test structures.

Columns: journal code and reference, chemical composition (without H atoms), unit-cell volume, number of formula units, space group, data-collection
temperature, data resolution.

Code Reference Composition V (Å3) Z Space group T (K) dmin(Å)

ln1194 Yue et al. (2006) C30O9 1496 2 P21 295 0.77
sk3023 Kikolski et al. (2006) C20O4 1682 4 P212121 100 0.85
sk1293 Wheatley et al. (1999) C44N6O8 1809 2 P�11 100 0.84
bm3037 Gliński et al. (2007) C12O2 2175 8 Pca21 173 0.74
ci6275 Karakurt et al. (2003) C17N4O2 3057 8 C2=c 295 0.84
gd3109 Lipstman et al. (2007) C48N4O8 4048 4 Cmca 110 0.81
sk3179 Gelbrich et al. (2007) C10N2O3 4502 16 P21=c 120 0.84
bg3066 Machado et al. (2008) C54ClCuP3 17597 16 C2=c 150 0.71



by a spherical shell of unobserved, freely floating reflections

up to h3 ¼ 1=d3. Naturally, h2 � h3. This means that all

observed reflections in the h1 � h � h2 range are given the

code 1, while all unobserved reflections in the h1 � h � h3

range (including any such reflection with h � h2) are given the

code 2. The rest of the structure factors with h> h3 are given

the code 0. Finally, special attention must be paid to those

reflections that are unobserved but should be extinct because

of the space-group symmetry. It is very important not to let

them change freely, otherwise they may run away, and drive

the iteration process towards complete failure. Therefore,

independent of all previous assignments, unobserved extinc-

tions must be given the code 0.

Usually d3 ¼ 1.0 Å is a good choice for the extended

resolution limit and, while it is a parameter of the algorithm,

here we fix its value. The upper resolution limit d2 is only a

parameter of our tests; we shall investigate its 1.0–1.6 Å range

in 0.1 Å steps. At a given d2 we also cover a range of threshold

parameters: in � ¼ k� the k values are increased from 1.0 to

1.5 in 0.1 steps. So we have a two-dimensional parameter space

where each point is a slightly different combination of ‘data +

algorithm’ that must be characterized by sufficient statistics.

The protocol is as follows. For each test structure and each

ðd2; �Þ pair we perform N structure-solution attempts starting

from different random phase sets, and run the iteration

process until convergence is detected or until we reach the

maximum number of cycles M. Our choice is N ¼ 200,

M ¼ 5000, so in the worst, no-solution case we spend

NM ¼ 106 iteration cycles on a single ðd2; �Þ parameter pair.

The success rate is naturally defined as

� ¼
n

N
; ð14Þ

where n � N is the number of converged runs.

The average number of iteration cycles spent on a successful

structure solution is another useful indicator, and is defined as

hmi ¼

PN
i¼1 mi

n
; ð15Þ

where mi is the number of cycles needed for convergence in

the ith run or mi ¼ M if there was no convergence. The

resulting tables are informative but large; therefore, these are

published as supplementary material.1 Here, we characterize

only the algorithm’s overall performance by averaging over

the � parameter at a fixed d2. The expressions of � and hmi can

be easily generalized to include the contribution of all runs at

several � values, in our case a total of 1200 structure-solution

attempts. Table 2 summarizes the results. We emphasize that

the k range of 1.0–1.5 in 0.1 steps is rather broad and rather

coarse, especially when compared to our previous studies

when algorithm variants were optimized by fine-tuning the

threshold parameter. Still, the present rough protocol of

obtaining overall indicators better approximates one’s first

encounter with a given problem. If the aim is to solve the

structure fast, then there is no time for finding optimal para-

meters.

The performance of the algorithm was also studied at the

other extreme, the case when all pieces of missing data are

missing at low resolution (see Fig. 1). For these tests a lower-

resolution limit h1 ¼ 1=d1 is set and considered as a parameter

of the data. The original data set is deleted within a sphere of

radius h1 and inside reflections h � h1 are treated as unob-

served with freely floating code 2. In contrast, measured

reflections are kept up to the highest available resolution, so

h2 ¼ 1=d2 is fixed and is determined by the original data

(d2 � 0:8 Å). In the h1 < h � h2 shell of reciprocal space

observed reflections are given the code 1, and if any unob-

served reflections occur, they are given the code 2. Reflections

research papers
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Table 2
Structure-solution statistics of missing high-resolution data using charge flipping in the AAR scheme (a) and in the simple Fourier recycling scheme (b).

Columns: journal code of structure, upper resolution limits d2 from 1.0 to 1.6 Å. The values in the table are the per cent success rate followed by the number of
iteration cycles per solution in parentheses as �-averaged indicators of efficiency.

Code 1.0 1.1 1.2 1.3 1.4 1.5 1.6

(a)
ln1194 100.0 (219) 99.6 (428) 77.8 (2720) 36.6 (10700) 5.9 (81600) 0.1 (6� 106) 0.0 (1)
sk3023 99.5 (326) 99.8 (444) 97.7 (1060) 70.8 (3760) 45.5 (8170) 9.1 (52400) 0.0 (1)
sk1293 100.0 (60) 100.0 (54) 100.0 (68) 100.0 (90) 100.0 (136) 99.9 (221) 96.8 (716)
bm3037 89.2 (1010) 80.0 (1720) 55.1 (5420) 12.6 (36900) 5.3 (92100) 0.8 (6� 105) 0.0 (1)
ci6275 100.0 (47) 100.0 (59) 100.0 (70) 99.9 (110) 99.6 (164) 97.6 (402) 82.3 (1600)
gd3109 84.0 (1020) 86.3 (903) 85.0 (1120) 79.2 (1930) 53.8 (4800) 48.3 (6070) 33.1 (10800)
sk3179 91.3 (800) 92.3 (744) 89.2 (1230) 79.8 (2140) 72.3 (3100) 56.2 (5520) 14.3 (32500)
bg3066 100.0 (49) 100.0 (53) 100.0 (64) 100.0 (81) 99.9 (109) 99.8 (151) 99.3 (241)
(b)
ln1194 43.2 (7820) 16.1 (27900) 1.3 (3:7� 105) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
sk3023 58.8 (4720) 28.8 (14100) 1.4 (3:5� 105) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
sk1293 100.0 (125) 99.0 (395) 79.7 (1820) 56.1 (4960) 30.7 (12800) 6.2 (77600) 2.1 (2:4� 105)
bm3037 48.8 (6350) 28.8 (13800) 2.8 (1:7� 105) 0.0 (1) 0.0 (1) 0.0 (1) 0.0 (1)
ci6275 83.3 (1150) 83.1 (1350) 63.8 (3390) 43.7 (7500) 40.7 (8380) 17.3 (25400) 3.1 (1:6� 105)
gd3109 97.3 (520) 81.1 (1930) 46.6 (6970) 23.3 (18100) 10.5 (44600) 4.2 (1:2� 105) 2.0 (2:5� 105)
sk3179 83.5 (1730) 64.5 (3820) 24.3 (17500) 9.0 (52700) 2.3 (2:1� 105) 0.8 (6:7� 105) 0.0 (1)
bg3066 99.0 (420) 98.0 (560) 96.5 (720) 94.1 (891) 91.8 (1070) 88.7 (1350) 85.9 (1710)

1 Supplementary data for this paper, including detailed tests and comparisons
of the AAR iteration scheme versus Fourier recycling, are available from the
IUCr electronic archives (Reference: SH5127). Services for accessing these
data are described at the back of the journal.



are not extended beyond the measured resolution, and all

h> h2 reflections are given the code 0. As earlier, independent

of all previous assignments, unobserved extinctions must be

given the code 0. For each test structure we investigate the

lower-resolution limit d1 in the 3.0–1.1 Å range, and the

previously defined protocol of structure-solution statistics is

performed. For each d1 a k range of 1.0–1.5 in 0.1 steps is

covered, that again means 1200 runs in total and 6� 106

iteration cycles in the worst case. Table 3 summarizes the

results.

For comparison and completeness, Tables 2 and 3 also

contain the double-averaged structure-solution statistics using

charge flipping in the simple Fourier recycling scheme. Data

treatment, reflection codes and calculation protocols are

identical to the above specifications, the only difference is the

k range of 0.8–1.3 that is slightly shifted to obtain better

results. It is quite obvious that as all other elements/

improvements of the algorithm are the same, it is really the

AAR iteration scheme that performs better than Fourier

recycling. Even more detailed tests and comparisons can be

found in the supplementary material.

Although such tables are never complete, we can make

some general observations about the performance of the

present algorithm. First, if a structure is easy to solve in the

case of complete high-resolution data, then there is a fair

chance that it can also be solved using incomplete data. There

are no absolute resolution limits, but we can easily find cases in

Table 2 when no data of resolution higher than d2 ¼ 1:6 Å or

in Table 3 when no data of resolution lower than d1 ¼ 1:2 Å

are needed for a successful structure solution. These numbers

mean that only a 12.5% or 30% fraction of the complete 0.8 Å

resolution sphere is needed for a successful structure solution.

In favourable cases we can do even better (e.g. reach

d2 ¼ 2:0 Å), so these requirements may be considered as

conservative estimates. On the other hand, there is no guar-

antee that such resolutions will always suffice. Some non-

centrosymmetric structures still pose a problem for all variants

of charge flipping, and this just gets worse with incomplete

data. A further observation is regarding the speed of

convergence. For a given structure, increasing the amount of

missing data usually means that the number of iteration cycles

needed for a solution increases by several orders of magnitude

before we run out of computational resources. Although the �
and hmi indicators included in the tables are double averages,

simple averages at a given � behave similarly, while at the best

� and the best run the computational cost of a solution may

be 10–100 times lower. Therefore, we hope to gain further

experience with the modified algorithm and improve its choice

of parameters.

The quality of the electron density was discussed earlier.

Here we only stress that it must be evaluated in two different

situations: first when the figures of merit are checked at

regular intervals, and second after the convergence when the

final electron density is improved to facilitate its atomic

interpretation and refinement. As mentioned above, the

convergence test is coded as an auxiliary L� step that does not

change the � of the main iteration process. After convergence

one cycle of the LDE cleanup procedure is applied on � that is

further modified by an Eobs ! Fobs transformation. More

powerful techniques like averaging multiple runs or switching

to a finer real-space grid were not applied here. Fig. 2 shows a

comparison of the reconstructed electron densities obtained

by using the original complete and the truncated incomplete

data. We judge that such figures speak for themselves.

4. Summary

While in our earlier works we confined ourselves to structure

solution from complete high-resolution data and tried to push

the limit of solvability towards larger structures, in the present

paper we proposed a variant of the charge-flipping algorithm

which is efficient when the structures are somewhat simpler
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Table 3
Structure-solution statistics of missing low-resolution data using charge flipping in the AAR scheme (a) and in the simple Fourier recycling scheme (b).

Columns: journal code of structure, lower resolution limits d1 from 3.0 to 1.1 Å. The values in the table are the per cent success rate followed by the number of
iteration cycles per solution in parentheses as �-averaged indicators of efficiency.

Code 3.0 2.0 1.5 1.4 1.3 1.2 1.1

(a)
ln1194 100.0 (72) 100.0 (100) 88.7 (939) 66.3 (2900) 47.8 (5940) 18.0 (23600) 0.0 (1)
sk3023 99.9 (199) 83.2 (1310) 48.2 (6400) 21.8 (19200) 1.4 (3:5� 105) 0.0 (1) 0.0 (1)
sk1293 100.0 (95) 83.7 (1030) 83.3 (1060) 83.3 (1090) 74.7 (2030) 46.2 (5980) 0.0 (1)
bm3037 100.0 (128) 100.0 (349) 78.0 (1640) 68.8 (2530) 50.8 (5220) 17.3 (24700) 1.3 (3:7� 105)
ci6275 100.0 (35) 100.0 (54) 82.1 (1210) 72.0 (2010) 67.1 (2520) 52.8 (4540) 0.0 (1)
gd3109 100.0 (80) 100.0 (853) 75.4 (1770) 66.8 (2570) 59.3 (3530) 31.3 (11200) 0.8 (6� 105)
sk3179 96.7 (482) 83.3 (1080) 83.3 (1110) 82.2 (1300) 77.4 (1650) 45.5 (6300) 0.0 (1)
bg3066 100.0 (41) 100.0 (48) 100.0 (116) 98.2 (355) 84.3 (1020) 83.3 (1060) 83.3 (1080)
(b)
ln1194 94.2 (1040) 87.6 (3140) 31.2 (12500) 15.3 (29400) 4.4 (1:1� 105) 0.3 (2� 106) 0.0 (1)
sk3023 62.3 (4160) 20.4 (21100) 2.8 (1:7� 105) 1.3 (4� 105) 0.0 (1) 0.0 (1) 0.0 (1)
sk1293 100.0 (120) 100.0 (134) 66.7 (2720) 66.7 (2780) 49.3 (5690) 24.3 (16700) 0.0 (1)
bm3037 81.4 (1920) 76.9 (2440) 55.7 (5260) 46.0 (7260) 24.1 (17300) 4.8 (1� 105) 0.0 (1)
ci6275 100.0 (95) 100.0 (108) 82.3 (1240) 66.5 (2700) 57.7 (3980) 28.9 (12700) 0.0 (1)
gd3109 100.0 (359) 99.9 (362) 82.1 (1620) 65.3 (3300) 46.3 (6670) 16.3 (27300) 0.0 (1)
sk3179 95.0 (857) 95.9 (835) 95.3 (1160) 78.6 (2270) 62.5 (4150) 22.9 (18700) 0.0 (1)
bg3066 100.0 (215) 99.9 (188) 99.5 (188) 98.9 (213) 99.1 (203) 98.4 (242) 82.8 (1240)



but the available data sets are incomplete. This variant

preserves the simplicity of the original algorithm, its key

component is the name-giving density modification, and its

key parameter is the dynamically determined threshold �.
Specifically, we studied the two extreme cases of missing

data that were generated from high-resolution data sets by

truncating them at high or low wavenumbers. In the case of

missing high-resolution data measured reflections are avail-

able up to a wavenumber h2. A parameter h3 > h2 defines an

extended spherical layer from h2 to h3 within which the

unknown Fourier amplitudes are allowed to evolve freely, and

only outside h3 are they reset to zero. In the case of missing

low-resolution data there are no observed reflections below a

wavenumber h1, and there is no other parameter than the

threshold �: the unknown Fourier amplitudes below h1 are

allowed to evolve freely, and those outside the resolution

sphere are reset to zero. In both cases, for symmetry-induced

extinctions the structure factors are also reset to zero.

The original charge-flipping algorithm with the above

specifications still works. However, the success rate is often

low, the useful � range is narrow and the detection of the

convergence is difficult. It is apparent that the perturbation

introduced by charge flipping is too strong in the case of

missing data, and some damping is necessary. As usual,

damping in the form of a negative feedback slows down the

convergence, and its unwanted effect must be counter-

balanced by some additional perturbation. After evaluating

different possibilities we opted for the iteration scheme AAR

(Bauschke et al., 2002, 2004), which adds a negative feedback

and increases the perturbation through the replacement of the

Fourier-modulus projection by its reflector; meanwhile, no

new parameter is introduced. Contrary to the original algo-

rithm, in this scheme the standard deviation � of the electron

density is not conserved, and the dynamical choice of � is

compulsory. Fortunately, by associating � to � via � ¼ k�, the

success of the iteration is not very sensitive to the choice of k,

and the same can be said about the choice of h3.

Although the present charge-flipping variant performs

quite well, it may fail, as any other method, and the cause of its

occasional failure is not easy to identify. In the tables the test

structures are listed in the order of increasing unit-cell

volumes. The order of the arising difficulty does not agree with

this. For instance, symmetry is a much more important factor:

non-centrosymmetric structures with only screw axes are a

greater challenge, irrespective of their size. The absence of

clear criteria of convergence is notorious not only for charge

flipping but for all iterative phase-retrieval methods. It is the

synonym of the absence of a proof of convergence, since a

theorem would necessarily include the conditions of its

validity. Iteration methods based on alternating projections to

two or more constraint sets have long been used in mathe-

matics; their first appearance is perhaps in von Neumann

(1949). In the numerical solution of partial differential equa-

tions by the operator splitting method (Douglas & Rachford,

1956; Lions & Mercier, 1979) convergence could be proven.

The apparently insurmountable difficulty in applications to

phase retrieval is the non-convexity of the modulus constraint.

A careful analysis of the situation can be found in papers by

Combettes & Trussell (1990), Bauschke et al. (2002) and Luke

(2005). Even in the case of a complete, perfect data set and

known feasibility (i.e. knowing that all the constraints can

simultaneously be satisfied) only local convergence and escape

from ‘near solutions’ could be shown (Elser, 2003). However,

in any real-life problem the resolution is finite and the data are

imperfect. Therefore, either at least one of the constraints

should be loosely defined (charge flipping works in this way)

or they cannot be perfectly satisfied, and it is under such

conditions that the iteration must get close to a solution by

starting far from it. The theorem we would need should

provide a lower bound on the limiting success rate

limN!1 �ðNÞ of finding a solution with a prescribed error

within a given ‘time’ M by starting from a random initial

condition, provided that the data satisfy some conditions. To
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Figure 2
Electron densities of butobarbital (code sk3179). The original structure
(top), structure solution of missing high-resolution data (middle,
d2 ¼ 1:6 Å) and of missing low-resolution data (bottom, d1 ¼ 1:3 Å).
Converged electron densities were obtained using the charge-flipping
threshold � ¼ 1:2�, and were improved by one cycle of LDE and by
switching back from Eobs to Fobs. All plots are shown at the 1:0� isosurface
level.



our knowledge, no existing iterative algorithm for phase

retrieval is supported by such a theorem.

In the absence of theorems and proofs, experience and

intuition are primordial. Based on them, we are confident that

the charge-flipping variant presented in this paper will find its

applications. Apart from the single-crystal cases discussed

above, other types of lacunary data could be dealt with. A

natural option is powder diffraction, where peak overlap

quickly increases with 2� and seriously limits the useful

resolution range, while the structures to be solved are not

necessarily complex. Resolutions are often similar to those

considered in the present paper, and it is likely that an

extended shell of freely floating reflections combined with the

present iteration scheme will allow structure solution at the

usual resolution limits. Another possible application is high-

pressure single-crystal diffraction. This is a more serious

problem because only reflections within a torus-shaped

volume can be measured, while certain directions of the

reciprocal space are completely blocked by the pressure cell.

The treatment of such incomplete data may need the combi-

nation of several techniques, but we believe that the algorithm

presented here can be one of them. The third possible appli-

cation is macromolecular crystallography, where very large

structures and low-resolution data occur simultaneously. In

this case it may be more appropriate to apply the modified

algorithm not ab initio but as an alternative density-

modification technique after some phase information is

already available. Here the advantage of charge flipping could

be that it works uniformly in real space, and it does not need

(or need to work out) any positional information about the

molecular envelope.

This research was supported by OTKA grant No. 67980K.
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Hovmöller, S. & Zou, X. (2007). Science, 315, 1113–1116.

Baerlocher, Ch., McCusker, L. B. & Palatinus, L. (2007). Z.
Kristallogr. 222, 47–53.

Bauschke, H. H., Combettes, P. L. & Luke, D. R. (2002). J. Opt. Soc.
Am. A, 19, 1334–1345.

Bauschke, H. H., Combettes, P. L. & Luke, D. R. (2003). J. Opt. Soc.
Am. A, 20, 1025–1034.

Bauschke, H. H., Combettes, P. L. & Luke, D. R. (2004). J. Approx.
Theory, 127, 178–192.

Bruker (2007). Topas 4.1 User’s Manual. Bruker AXS Inc., Madison,
Wisconsin, USA.

Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L.,
Giacovazzo, C. & Siliqi, D. (2005). Acta Cryst. D61, 556–565.

Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L.,
Giacovazzo, C. & Siliqi, D. (2007). J. Appl. Cryst. 40, 931–937.

Coelho, A. A. (2007). Acta Cryst. A63, 400–406.

Combettes, P. L. & Trussell, H. J. (1990). J. Optimiz. Theory App. 67,
487–507.

Douglas, J. & Rachford, A. (1956). Trans. Am. Math. Soc. 82, 421–
439.

Dumas, C. & van der Lee, A. (2008). Acta Cryst. D64, 864–873.
Eggeman, A., White, T. & Midgley, P. (2009). Acta Cryst. A65, 120–

127.
Elser, V. (2003). J. Opt. Soc. Am. A, 20, 40–55.
Fienup, J. R. (1982). Appl. Opt. 21, 2758–2769.
Fleischer, F., Weber, T., Deloudi, S., Palatinus, L. & Steurer, W.

(2010). J. Appl. Cryst. 43, 89–100.
Fung, R., Shneerson, V., Saldin, D. K. & Ourmazd, A. (2008). Nat.

Phys. 5, 64–67.
Gelbrich, T., Zencirci, N. & Griesser, U. J. (2007). Acta Cryst. C63,

o751–o753.
Gerchberg, R. W. & Saxton, W. O. (1972). Optik, 35, 237–246.
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